Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Hematol ; 102(10): 2725-2734, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639050

RESUMO

Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.


Assuntos
Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Feminino , Células HEK293 , Células HeLa , Mutação , Janus Quinase 2/genética
2.
Oncoimmunology ; 11(1): 2073050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558161

RESUMO

The immune system is important for elimination of residual leukemic cells during acute myeloid leukemia (AML) therapy. Anti-leukemia immune response can be inhibited by various mechanisms leading to immune evasion and disease relapse. Selected markers of immune escape were analyzed on AML cells from leukapheresis at diagnosis (N = 53). Hierarchical clustering of AML immunophenotypes yielded distinct genetic clusters. In the absence of DNMT3A mutation, NPM1 mutation was associated with decreased HLA expression and low levels of other markers (CLIP, PD-L1, TIM-3). Analysis of an independent cohort confirmed decreased levels of HLA transcripts in patients with NPM1 mutation. Samples with combined NPM1 and DNMT3A mutations had high CLIP surface amount suggesting reduced antigen presentation. TIM-3 transcript correlated not only with TIM-3 surface protein but also with CLIP and PD-L1. In our cohort, high levels of TIM-3/PD-L1/CLIP were associated with lower survival. Our results suggest that AML genotype is related to blast immunophenotype, and that high TIM-3 transcript levels in AML blasts could be a marker of immune escape. Cellular pathways regulating resistance to the immune system might contribute to the predicted response to standard therapy of patients in specific AML subgroups and should be targeted to improve AML treatment.


Assuntos
DNA Metiltransferase 3A , Leucemia Mieloide Aguda , Nucleofosmina , Antígeno B7-H1/genética , Biomarcadores , DNA Metiltransferase 3A/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Nucleofosmina/genética
3.
J Cell Biochem ; 123(2): 375-389, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750857

RESUMO

P21-activated kinases (PAKs) regulate processes associated with cytoskeletal rearrangements, such as cell division, adhesion, and migration. The possible regulatory role of PAKs in cell metabolism has not been well explored, but increasing evidence suggests that a cell metabolic phenotype is related to cell interactions with the microenvironment. We analyzed the impact of PAK inhibition by small molecule inhibitors, small interfering RNA, or gene knockout on the rates of mitochondrial respiration and aerobic glycolysis. Pharmacological inhibition of PAK group I by IPA-3 induced a strong decrease in metabolic rates in human adherent cancer cell lines, leukemia/lymphoma cell lines, and primary leukemia cells. The immediate effect of FRAX597, which inhibits PAK kinase activity, was moderate, indicating that PAK nonkinase functions are essential for cell metabolism. Selective downregulation or deletion of PAK2 was associated with a shift toward oxidative phosphorylation. In contrast, PAK1 knockout resulted in increased glycolysis. However, the overall metabolic capacity was not substantially reduced by PAK1 or PAK2 deletion, possibly due to partial redundancy in PAK1/PAK2 regulatory roles or to activation of other compensatory mechanisms.


Assuntos
Mitocôndrias/enzimologia , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Microambiente Tumoral , Quinases Ativadas por p21/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Quinases Ativadas por p21/genética
4.
Hum Mol Genet ; 31(1): 1-9, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693784

RESUMO

Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.


Assuntos
Degeneração Retiniana , Descolamento Retiniano , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patologia , Células HEK293 , Humanos , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Descolamento Retiniano/congênito , Descolamento Retiniano/genética , Quinases Ativadas por p21/genética
5.
Sci Rep ; 11(1): 1084, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441774

RESUMO

Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indóis/farmacologia , Leucemia/tratamento farmacológico , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteínas Nucleares/genética , Nucleofosmina
6.
Cell Adh Migr ; 15(1): 18-36, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33464167

RESUMO

P21-activated kinases (PAK) regulate processes associated with cytoskeleton dynamics. PAK expression in leukemia cells was measured on protein and mRNA levels. In functional assays, we analyzed the effect of PAK inhibitors IPA-3 and FRAX597 on cell adhesivity and viability. PAK2 was dominant in cell lines, whereas primary cells also expressed comparable amount of PAK1 transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 levels correlated with surface density of integrins ß1 and αVß3. PAK1-full, but not PAK2, was present in membrane protrusions. IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death.


Assuntos
Leucemia , Quinases Ativadas por p21 , Adesão Celular , Linhagem Celular , Fibronectinas/genética , Humanos , Leucemia/genética , Quinases Ativadas por p21/genética
7.
Eur J Haematol ; 105(5): 578-587, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32668024

RESUMO

OBJECTIVES: Interaction of leukemia cells with the bone marrow extracellular matrix promotes cell survival and resistance to chemotherapy. In this work, we analyzed integrin expression and adhesivity to fibronectin in primary cells from patients with acute myeloid leukemia. METHODS: Surface expression of integrins ß1 and αVß3 on primary leukemia cells (N = 46) was correlated with the stem cell marker CD34, as well as with cell adhesivity to fibronectin. The results were analyzed with regard to the mutational status of NPM1 and FLT3 genes. RESULTS: The integrin ß1 was omnipresent, whereas αVß3 was often more expressed on CD34-positive cells. In particular, higher αVß3 expression on CD34+ cells was associated with NPM1 mutation (P = .0018). Monocytic leukemias had significantly higher αVß3 expression compared to less maturated cases (P = .0008). Cells from patients with internal tandem duplications in FLT3 (FLT3-ITD) had lower adhesivity to fibronectin compared to cells with wild-type FLT3 (P = .031), specifically in less differentiated myeloblasts. Inhibition of a putative FLT3-ITD target, EZH2, increased cell adhesivity in MV4-11 cell line (P = .024). CONCLUSIONS: The integrin αVß3 is expressed in particular on CD34+ cells with NPM1 mutation and might have a prognostic value in patients with mutated NPM1. FLT3-ITD is associated with lower cell adhesivity, especially in patients with less differentiated leukemias.


Assuntos
Fibronectinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Duplicação Gênica , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Ligação Proteica , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
8.
Sci Rep ; 9(1): 17171, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748572

RESUMO

P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.


Assuntos
Quinases Ativadas por p21/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Éxons/genética , Células HEK293 , Células HeLa , Humanos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/genética
9.
Int J Mol Sci ; 20(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185600

RESUMO

Compared to solid tumors, the role of PD-L1 in hematological malignancies is less explored, and the knowledge in this area is mostly limited to lymphomas. However, several studies indicated that PD-L1 is also overexpressed in myeloid malignancies. Successful treatment of the acute myeloid leukemia (AML) is likely associated with elimination of the residual disease by the immune system, and possible involvement of PD-L1 in this process remains to be elucidated. We analyzed PD-L1 expression on AML primary cells by flow cytometry and, in parallel, transcript levels were determined for the transcription variants v1 and v2. The ratio of v1/v2 cDNA correlated with the surface protein amount, and high v1/v2 levels were associated with worse overall survival (p = 0.0045). The prognostic impact of PD-L1 was limited to AML with mutated nucleophosmin and concomitant internal tandem duplications in the FLT3 gene (p less than 0.0001 for this particular AML subgroup).


Assuntos
Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Leucemia Mieloide Aguda/sangue , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/genética , Nucleofosmina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
10.
Int J Biochem Cell Biol ; 111: 52-62, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009764

RESUMO

Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Animais , Humanos , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Terapia de Alvo Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleofosmina , Multimerização Proteica
11.
PLoS One ; 13(12): e0204290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30557403

RESUMO

Acute myeloid leukemia with mutated nucleophosmin (NPMc+ AML) forms a distinct AML subgroup with better prognosis which can potentially be associated with immune response against the mutated nucleophosmin (NPM). As the T-cell-mediated immunity involves antigen presentation on HLA class I molecules, we hypothesized that individuals with suitable HLA type could be less prone to develop NPMc+ AML. We compared HLA class I distribution in NPMc+ AML patient cohort (398 patients from 5 centers) with the HLA allele frequencies of the healthy population and found HLA-A*02, B*07, B*40 and C*07 underrepresented in the NPMc+ AML group. Presence of B*07 or C*07:01 antigen was associated with better survival in patients without concomitant FLT3 internal tandem duplication. Candidate NPM-derived immunopeptides were found for B*40 and B*07 using prediction software tools. Our findings suggest that a T-cell-mediated immune response could actually explain better prognosis of NPMc+ patients and provide a rationale for attempts to explore the importance of immunosuppressive mechanisms in this AML subgroup.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunidade Celular , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Proteínas Nucleares , Linfócitos T/imunologia , Adulto , Idoso , Intervalo Livre de Doença , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Nucleofosmina , Prevalência , Taxa de Sobrevida
12.
Int J Biochem Cell Biol ; 103: 65-73, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30130654

RESUMO

C-terminal mutations of the nucleolar protein nucleophosmin (NPM) are the most frequent genetic aberration detected in acute myeloid leukemia (AML) with normal karyotype. The mutations cause aberrant cytoplasmic localization of NPM and lead to loss of functions associated with NPM nucleolar localization, e.g. in ribosome biogenesis or DNA-damage repair. NPM has many interaction partners and some of them were proved to interact also with the mutated form (NPMmut) and due to this interaction thereby to be withdrawn from their site of action. We analyzed the impact of the mutation on NPM interaction with nucleolin (NCL) which is also prevalently localized into the nucleolus and cooperates with wild-type NPM (NPMwt) in many cellular processes. We revealed that the NCL-NPM complex formation is completely abolished by the mutation and that the presence/absence of the interaction is not affected by drugs causing genotoxic stress or differentiation. Deregulation resulting from changes of NCL/NPMwt ratio may contribute to leukemogenesis.


Assuntos
Nucléolo Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Complexos Multiproteicos/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/patologia , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Nucleofosmina , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Nucleolina
13.
Methods Appl Fluoresc ; 6(3): 035016, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29901450

RESUMO

Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Nucleares/metabolismo , Agregados Proteicos/fisiologia , Humanos , Nucleofosmina
14.
Cell Adh Migr ; 12(3): 286-298, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28678601

RESUMO

Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.


Assuntos
Dasatinibe/farmacologia , Fibronectinas/metabolismo , Leucemia/tratamento farmacológico , Quinases da Família src/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Quinases da Família src/metabolismo
15.
PLoS One ; 12(4): e0175175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384310

RESUMO

Mutations of the gene for nucleophosmin (NPM1) are the most frequent genetic aberration in patients with acute myeloid leukemia (AML). The mechanism of leukemic transformation in this leukemia subtype is not fully understood, but aberrant cytoplasmic localization of mutated NPM (NPMmut) is widely considered as an important factor for leukemia manifestation. We analyzed the subcellular localization of three types of NPM with a C-terminal mutation (A, B and E). Genes for the individual NPM forms were fused with a gene for one of fluorescent protein variants in plasmids, which were transfected into three cell lines with different endogenous NPM expression. Subcellular localization of the fluorescent protein-labeled NPM was further correlated with the relative expression of all NPM forms. We confirmed a high cytoplasmic expression of NPMmutA and NPMmutB whereas a substantial fraction of NPMmutE was found to be localized in nucleoli. Moreover, we revealed that the localization of fluorescently labeled NPM is affected by the interaction between various forms of the protein.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Nucleofosmina , Ligação Proteica , Frações Subcelulares/metabolismo
16.
Cancer Immunol Res ; 4(10): 815-819, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543594

RESUMO

The expression on the surface of tumor cells of ligands for the PD-1 inhibitory receptor prevents the antitumor immune response and is considered to be a negative prognostic factor in a variety of solid tumors as well as in hematologic malignancies. To determine if it were possible to analyze PD-L1 with PCR-based methods, we assessed the expression of PD-L1 in primary samples from patients with acute myeloid leukemia, in healthy donors, and in a panel of cell lines, by means of flow cytometry, RT-PCR, and Western blotting. Although the surface density of the protein was not correlated with the amount of expressed full-length mRNA, we found a statistically significant positive correlation between PD-L1 surface density and the ratio of two transcript variants (variant 1/variant 2). Our PCR-based method allows for retrospective examination of PD-L1 surface expression from frozen cDNA samples, without the need for a reference gene. Our results also suggest that variant 2, which is produced by alternative splicing, negatively regulates PD-L1 protein expression on the cell surface. In addition, PD-L1 exposition on the cell surface is clearly associated with a shift of electrophoretic mobility, observed on Western blots. This finding can explain the relatively large variability in PD-L1 apparent molecular weight reported in the literature and offers an alternate means for the assessment of PD-L1 surface expression. Cancer Immunol Res; 4(10); 815-9. ©2016 AACR.


Assuntos
Antígeno B7-H1/biossíntese , Biomarcadores Tumorais/biossíntese , Leucemia Mieloide Aguda/imunologia , Processamento Alternativo , Antígeno B7-H1/sangue , Antígeno B7-H1/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Western Blotting/métodos , Regulação Neoplásica da Expressão Gênica/imunologia , Variação Genética , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Células Tumorais Cultivadas
17.
Blood Cells Mol Dis ; 58: 67-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27067491

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL have dramatically improved chronic myeloid leukemia therapy. While imatinib remains to be the first line therapy, about 30% of patients develop resistance or intolerance to this drug and are recommended to switch to other TKIs. Nilotinib and dasatinib are currently implemented into the first line therapy and other inhibitors have already entered the clinical practice. This opens further questions on how to select the best TKI for each patient not only during the therapy but also at diagnosis. The individualized therapy concept requires a reliable establishment of prognosis and prediction of response to the available TKIs. We tested the ex vivo sensitivity of patient primary leukocytes to imatinib, nilotinib and dasatinib - two concentrations of each inhibitor for 48h incubation - and we evaluated the usefulness of such tests for the clinical practice. Besides reflecting the actual sensitivity to the therapy, our optimized simple tests were able to predict the outcome in 90/87% of patients, for the next 12/24months, respectively. According to these results, the presented ex vivo testing could help clinicians to select the appropriate drug for each patient at diagnosis and also at any time of the therapy.


Assuntos
Antineoplásicos/farmacologia , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/uso terapêutico , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Resultado do Tratamento
18.
J Cell Biochem ; 117(6): 1319-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26505272

RESUMO

Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms.


Assuntos
Dactinomicina/farmacologia , Leucemia/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Apoptose , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Células HL-60 , Células HeLa , Humanos , Leucemia/genética , Nucleofosmina
19.
PLoS One ; 10(5): e0127637, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992555

RESUMO

Nucleophosmin 1 (NPM1) mutations are frequently found in patients with acute myeloid leukemia (AML) and the newly generated sequences were suggested to induce immune response contributing to the relatively favorable outcome of patients in this AML subset. We hypothesized that if an efficient immune response against mutated nucleophosmin can be induced in vivo, the individuals expressing HLA alleles suitable for presenting NPM-derived peptides should be less prone to developing AML associated with NPM1 mutation. We thus compared HLA class I frequencies in a cohort of patients with mutated NPM1 (63 patients, NPMc+), a cohort of patients with wild-type NPM1 (94 patients, NPMwt) and in normal individuals (large datasets available from Allele Frequency Net Database). Several HLA allelic groups were found to be depleted in NPMc+ patients, but not in NPMwt compared to the normal distribution. The decrease was statistically significant for HLA B(*)07, B(*)18, and B(*)40. Furthermore, statistically significant advantage in the overall survival was found for patients with mutated NPM1 expressing at least one of the depleted allelic groups. The majority of the depleted alleles were predicted to bind potent NPM-derived immunopeptides and, importantly, these peptides were often located in the unmutated part of the protein. Our analysis suggests that individuals expressing specific HLA allelic groups are disposed to develop an efficient anti-AML immune response thanks to aberrant cytoplasmic localization of the mutated NPM protein.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade , Leucemia Mieloide Aguda/imunologia , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Sequência de Aminoácidos , Estudos de Casos e Controles , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Nucleofosmina , Peptídeos/química , Peptídeos/imunologia , Análise de Sobrevida
20.
Eur J Haematol ; 95(4): 352-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25600340

RESUMO

OBJECTIVE: A new interleukin-6 (IL-6)-dependent plasma cell leukemia cell line UHKT-944 was established from bone marrow cells derived from a 55-yr-old man with plasma cell leukemia. RESULTS: The cell line possesses phenotypic characteristics of plasma cells including the production of a monoclonal immunoglobulin IgA1-kappa. VH3-9 region of IgVH genes was rearranged and somatically hypermutated. The UHKT-944 cells were found to be negative for most of tested B-cell, T-cell, and myeloid markers. According to cytogenetic analysis, the cells were classified as near tetraploid with several numerical and structural abnormalities including the t(14;20) involving IgH locus. CONCLUSION: The established permanent plasma cell leukemia cell line is a suitable model for the study of cellular and molecular mechanisms of pathogenesis of this rare malignant disease.


Assuntos
Leucemia Plasmocitária/metabolismo , Leucemia Plasmocitária/patologia , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Análise Citogenética , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunofenotipagem , Leucemia Plasmocitária/diagnóstico , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...